Unsupervised Machine Learning Models for User Segmentation in a Mobile App : Evaluating the Effectiveness
| dc.contributor.advisor | Artinger, Florian | |
| dc.contributor.advisor | Koç, Hasan | |
| dc.contributor.author | Elena Sidorenko | |
| dc.contributor.department | Faculty of Business Administration | |
| dc.contributor.other | Berlin International University of Applied Sciences | |
| dc.date.accessioned | 2024-01-15 | |
| dc.date.accessioned | 2025-11-28T13:27:24Z | |
| dc.date.available | 2025-11-28T13:27:24Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | AI-GENERATED ABSTRACT: Abstract: Context: User segmentation is an effective tool to understand your users' needs and make data-driven decisions. With limited resources many startups have. Would user clustering with unsupervised machine learning models be effective? Objectives: The thesis consists of a literature review, two interviews, and data analysis. It evaluates how effective the different unsupervised models are in application to user segmentation in a mobile application. Methods: a convenience sample interview was conducted with the chief executives of a startup to get an understanding of primary goals and objectives. Data were analyzed with the application of dimension reduction (PCA, t-SNE, UMAP, correlation coefficient, variance threshold), clustering (K-Means, DBSCAN), and supervised models for predictive analysis (Random Forest, Lasso, Logistic Regression). Results: It was possible to identify 4 different clusters of users within the app with unique behavior. Conclusion: The application of PCA, K-Means, and Random Forest was the most effective for a highly dimensional dataset. This user segmentation was valuable, but not new to the chief executives to the company. Meaningful insights were drawn from data analysis. Keywords: user segmentation, unsupervised learning, machine learning, mobile application, PCA, K-Means clustering, Random Forest, data analysis, startups, user behavior clustering | en |
| dc.description.degree | BA | |
| dc.description.tableofcontents | MACHINE-GENERATED CONTENTS NOTE: Table of Contents abstract..........................................................................................................2 introduction....................................................................................................3 literature Review..........................................................................................6 2.1 Non-machine Learning User Segmentation Techniques..................7 2.2 Supervised Versus Unsupervised Machine Learning.........................7 2.2.1 Supervised Learning................................................................8 2.2.2 Unsupervised Learning..............................................................8 2.3 Customer Segmentation With Machine Learning...........................12 2.4 User Segmentation in Social Media Platforms..............................13 2.4.1 Case of Pinterest.................................................................13 2.4.2 Case of Instagram.................................................................13 2.5 Methodological Considerations..............................................14 methodology...............................................................................................15 the Research Hypotheses.........................................................................15 Research Design.....................................................................................15 Literature Review...................................................................................16 Interview No1.........................................................................................16 Data Analysis........................................................................................17 Data Collection......................................................................................17 Data Cleaning and Dimension Reduction..........................................17 Clustering Algorithms...........................................................................20 Predictive Models................................................................................22 Interview 2............................................................................................22 results...........................................................................................................23 Evaluation of Interview No1...................................................................23 Data Analytics.......................................................................................24 Cluster Analysis...................................................................................25 Predictive Models................................................................................28 Evaluation of Interview No2.................................................................29 discussion....................................................................................................30 conclusion...................................................................................................33 references...................................................................................................35 appendix......................................................................................................40 Section A.............................................................................................40 Section B.............................................................................................49 appendix 2..................................................................................................50 | en |
| dc.identifier.uri | https://repository.berlin-international.de/handle/123456789/802 | |
| dc.language.iso | eng | |
| dc.subject | Data Analysis | |
| dc.subject | K-Means Clustering | |
| dc.subject | Machine Learning | |
| dc.subject | Mobile Application | |
| dc.subject | Pca | |
| dc.subject | Random Forest | |
| dc.subject | Unsupervised Learning | |
| dc.subject | User Behavior Clustering | |
| dc.subject | User Segmentation | |
| dc.title | Unsupervised Machine Learning Models for User Segmentation in a Mobile App : Evaluating the Effectiveness | |
| dc.type | Thesis |
Files
Original bundle
1 - 1 of 1
